
Abmessungen und Technische Daten

			SH290 RS	SH370 RS	SH400 RS
_	А	mm	25	25	25
Kaltwassereintritt	В	mm	55	55	55
Speicherrücklauf	С	mm	220	220	220
Zirkulationsanschluss	D	mm	544	665	1081
Tauchhülse für Speichertemperaturfühler (Sonderanwendung)	E	mm	644	791	1241
Speichervorlauf	F	mm	784	964	1415
Tauchhülse für Speichertemperaturfühler	G	mm	829	1009	1459
Warmwasseraustritt	Н	mm	1226	1523	1811
Höhe	1	mm	1294	1591	1921
Mindestabstand Speicheroberkante - Raumhöhe	J	mm	400	400	400
Durchmesser	K	mm	700	750	750
Nettogewicht	L	kg	137	145	200
Bruttogewicht	М	kg	414	497	633

Logalux SH290/370/400 RS-B Monovalent stehend für Wärmepumpen

	SH290 RS	SH370 RS	SH400 RS		
Speicherinhalt (I)	277	351	405		
Kippmaß (mm)	1475	1750	2050		
Heizwasserinhalt (I)	22	29	47,5		
Bereitschaftswärme-Aufwand 1) (kWh/24h)	1,61	1,51	1,78		
Maximaler Betriebsdruck (bar)	10 1	10 Heizwasser/10 Warmwasser			
Maximale Betriebstemperatur (°C)	110	110 Heizwasser/95 Warmwasser			
Größe Wärmetauscher (m²)	3,2	4,2	7,0		
Leistungskennzahl ²⁾	2,3	3	3,7		
Leistungskennzahl ³⁾	13	15	25		
Dauerleistung (kW) 4)	8,8	13	20,9		
Dauerleistung (I/h) 4)	216	320	514		
Dauerleistung (kW) 5)	80	90	140		
Dauerleistung (I/h) 5)	1965	2210	3435		
Dauerleistung (kW) ⁶⁾	65	75	110		
Dauerleistung (I/h) ⁶⁾	1510	1288	1890		
EU-Richtlinie für Energieeffizienz					
Energieeffizienzklasse	В	В	В		
Energieeffizienzklassen-Spektrum		A+ -> F			
Warmhalteverlust (W)	67,0	63,0	74,0		
Speichervolumen (I)	276,8	350,6	405,2		

¹⁾ Messwert bei 45 K Temperaturdifferenz nach EN 12897

⁶⁾ Bei $t_v = 80$ °C, 10/60 °C

 $^{^{2)}}$ In Anlehnung an DIN 4708 $t_{sp}=55\,^{\circ}\text{C}$ und $t_{v}=60\,^{\circ}\text{C}$ $^{3)}$ Nach DIN 4708 bei Erwärmung $t_{sp}=60\,^{\circ}\text{C}$ und $t_{v}=80\,^{\circ}\text{C}$

 $^{^{4)}}$ Bei $t_v = 60\,^{\circ}\text{C}, \, 10/45\,^{\circ}\text{C}$ $^{5)}$ Bei $t_v = 80\,^{\circ}\text{C}, \, 10/45\,^{\circ}\text{C}$